信誉好的十大网投

当前位置: 网站首页  ·  学术报告  ·  内网报告  ·  正文

电气与十大网投平台信誉排行榜砺山学术报告之二十三

发布时间:2023-11-29   文章来源:   浏览:

报告人 吴佳成 时间 2023年11月29日9点
地点 电气楼304

报告题目:Performance-Based Reinforcement Learning Control for 2-D Markov Jump Roesser Systems

报告人:吴佳成 博士

报告时间:2023年11月29日9点

报告地点:电气楼304

报告对象:感兴趣的教师、研究生等

主办单位:电气与十大网投平台信誉排行榜

报告人简介:

吴佳成,浙江大学控制科学与工程学院博士,已发表SCI论文10篇,其中IEEE汇刊6篇。目前研究兴趣包括,强化学习控制,Markov跳变系统,鲁棒控制等。

报告摘要:

This paper studies the performance-based reinforce- ment learning control problem for discrete-time two-dimensional Markov jump Roesser systems with unknown system dynamics. To stabilize two-dimensional Markov jump Roesser systems and minimize H∞ performance, existing design methods typically necessitate prior knowledge of the system dynamics. However, lack of model information is a common phenomenon in practice. To track this problem, a novel model-free reinforcement learning control method where horizontal and vertical system data are effectively utilized is presented. It is shown that the optimal control policy is designed with the minimized H∞ performance in the presence of worst-case disturbance. Moreover, a data- driven value iteration algorithm is developed for two-dimensional Markov jump Roesser systems, with the aim of searching for an initial stabilizing control policy. Compared with the existing control methods of two-dimensional Markov jump Roesser systems, the most significant advantage of the proposed method is that, by utilizing system data, optimal control policy and optimal H∞ performance can be obtained by solving a set of linear matrix inequalities depending on system data. Then, the convergence of the proposed algorithms and the asymptotic mean square stability of the closed-loop systems are analyzed. Finally, simulation results demonstrate the significance and validity of the proposed control methods.


欢迎全校师生踊跃参加!



关闭

  • 官方微信

  • 官方微博

佳山校区地址:安徽省马鞍山市湖东北路500号      邮编:243002

秀山校区地址:安徽省马鞍山市马向路1530号     邮编:243032

版权所有 © 2020  信誉好的十大网投 【皖ICP备19010821 皖公网安备 34050302000234号】